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Thermodynamics of a spin-1 Bose gas with ferromagnetic interactions is investigated via the mean-field
theory. It is apparently shown in the specific-heat curve that the system undergoes two phase transitions, the
ferromagnetic transition and Bose-Einstein condensation, with the Curie point above the condensation tem-
perature. Above the Curie point, the susceptibility fits the Curie-Weiss law perfectly. At a fixed temperature, the
reciprocal susceptibility is also in a good linear relationship with the ferromagnetic interaction.
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I. INTRODUCTION

The realization of spinor Bose-Einstein condensation
�BEC� in optical traps1,2 has stimulated enormous interest in
magnetic properties of quantum Bose gases.3–15 In optical
traps, the hyperfine degree of freedom of confined atoms,
such as 87Rb, is released and therefore the atom can exhibit
magnetism. More intriguingly, an exchangelike spin-spin in-
teraction can be present between atoms. In the F=1 87Rb
atoms, the interaction is ferromagnetic �FM�,3 so the 87Rb
gas appears to be a prototype of itinerant-boson
ferromagnets.4–8

Ferromagnetism is one of the central research themes in
condensed-matter physics.16,17 Two types of ferromagnetism
have already been intensively studied: local-moment ferro-
magnetism and itinerant-electron ferromagnetism. Although
particles in these two systems obey different statistics, they
both share some common features. For example, both ferro-
magnets have a Curie point, above which the susceptibility
conforms to the Curie-Weiss law. Nonetheless, from the the-
oretical point of view, the origin of the Curie-Weiss law is
quite different for these two systems. In insulators it is due to
local thermal spin fluctuations and can be easily explained in
the mean-field approximation. On the other hand, in
itinerant-electron ferromagnets the Curie-Weiss law may be
caused by the mode-mode coupling between spin fluctua-
tions and the theoretical treatment is much more
complicated.17 An appropriate theory is the self-consistent
renormalization �SCR� theory18 which goes beyond the
Hartree-Fock approximation and the random-phase approxi-
mation. The SCR theory succeeds in explaining various mag-
netic properties of itinerant-electron ferromagnets and is also
extended to treat the specific heat.19

The 87Rb gas provides the opportunity to study the third
type of ferromagnetism. Ho4 and Ohmi and Machida5 stud-
ied its ground-state properties and the spin-wave spectrum.
The long-wavelength spectrum is linear in k, the wave vec-
tor, as in the two former cases. In our previous papers, we
have investigated the finite-temperature properties, espe-
cially the Curie point.8 We suggest that the phase diagram in
itinerant bosons should be more complicated than the other
two ferromagnets because the Bose system has an intrinsic
phase transition other than the ferromagnetic transition. We
arrived at the interesting conclusion that its Curie point, TF,
is never below the Bose-Einstein condensation temperature,

TC, regardless of the magnitude of the ferromagnetic
coupling.8 Kis-Szabo et al.9 got the same point later. How-
ever, thermodynamics of the itinerant-boson ferromagnet has
not yet been investigated systematically so far.

The purpose of this paper is to calculate the thermody-
namic quantities of ferromagnetic bosons. As in the fermion
case, the specific heat and magnetic susceptibility are of the
most interest. In Sec. II, we introduce the mean-field ap-
proximation to deal with ferromagnetic interaction, taking
the spin-1 Bose gas as an example. In Sec. III, phase transi-
tions are discussed by calculating the free energy and spe-
cific heat. In Sec. IV, the susceptibility above the Curie point
is calculated. A summary is given in Sec. V.

II. MEAN-FIELD APPROXIMATION

The spin-1 Bose gas with ferromagnetic couplings is de-
scribed by the following Hamiltonian:

Ĥ = �
�
� dr�̂�

†�r�� 1

2m
�2 − �he��̂��r� −

1

2
Is� drŜ�r� · Ŝ�r� ,

�1�

where �̂��r� is the quantum field operator for annihilating an
atom in spin state ��� at site r. For a spin-1 gas, �= +1,0 ,
−1. The parameter he denotes the external magnetic field.
The last term represents the ferromagnetic exchange between
two different bosons meeting at site r and Is��0� is the ex-

change constant. Ŝ= 	Ŝx , Ŝy , Ŝz
 are the spin operators, which
can be expressed via the 3�3 Pauli matrices, for example,

Ŝz = ��̂+1
† �̂0

† �̂−1
† ��1 0 0

0 0 0

0 0 − 1��
�̂+1

�̂0

�̂−1

� . �2�

Within the mean-field approximation, we treat the spin-
dependent interactions as a molecular field except of a par-
ticle with itself,

−
1

2
Ŝ · Ŝ  − �Ŝ� · Ŝ +

1

2
�Ŝ� · �Ŝ� = − M̄Ŝz +

1

2
M̄2, �3�

where M̄ = �Ŝz� is the ferromagnetic order parameter. Then
the effective Hamiltonian for the grand canonical ensemble
reads
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Ĥ − N̂� = �
k�

��k − � − ��hm + he��n̂k� +
1

2
M̄2IsN , �4�

where �k is the kinetic energy for free particles, hm= IsM̄ is
called the molecular field, similar to the Stoner theory for
fermion gases,16 � is the chemical potential, and N is the
total particle number. The grand thermodynamic potential
can be worked out in a standard way,

� = − kBT ln Tr exp�−
Ĥ − N̂�

kBT
�

= −
�kBT�5/2Vm3/2

�2�	2�3/2 �
�

f5/2�� + �h

kBT
� +

1

2
M̄2IsN , �5�

where h=hm+he, m is the mass of particle, and f is the poly-
logarithm function defined by

fn�x� � �
k=1



�ex�k

kn , �6�

where x�0. The mean-field self-consistent equations are de-
rived from the grand thermodynamic potential,

n = −
1

V
� ��

��
�

T,V
+ n0 = � kBTm

2�	2�3/2

�
�

f3/2�� + �h

kBT
� + n0,

�7a�

M = −
1

V
� ��

�he
�

T,V
+ n0

= � kBTm

2�	2�3/2� f3/2�� + h

kBT
� − f3/2�� − h

kBT
�� + n0,

�7b�

where n is the density of particles, n0 is the density of the

condensed one, and M � NM̄
V is the magnetization. n0 is zero

unless the temperature is below the BEC point TC.

III. FREE ENERGY AND SPECIFIC HEAT

In our previous investigations, we showed that the system
exhibits the two phase transitions, the BEC and the ferro-
magnetic transition.8 The condensation temperature TC and
the Curie temperature TF are calculated by solving the self-
consistent equations. We find that TF is never below TC for
all systems with a finite ferromagnetic exchange �Is�0�.

However, one can get another solution to Eqs. �7a� and
�7b�, with M =0 at all temperatures. It means that the system
does not undergo a ferromagnetic transition at all but re-
mains in the paramagnetic �PM� state at low temperatures.
Actually, whether there exists a Curie point in the ferromag-
netic Bose gases is still a controversial question. Some re-
searchers suppose that the Bose gas cannot be magnetized
spontaneously at low temperatures even if the ferromagnetic
exchange is present.20

In order to single out the physically correct solution, one
has to compare the free energy of the FM state and that of

the PM state. The relation between the free energy and the
grand thermodynamic potential has the form

F = � + N� . �8�

For computational convenience, the temperature T and ex-
change interaction Is are rescaled, as shown in Ref. 8, by the
following formula: t= �3�� 3

2 ��−2/3T /T0 and I
= �3�� 3

2 ��−2/3Is / �kBT0�, where

T0 =
1

kB� n

3��3

2
��

2/3�2�	2

m
�

is the condensation temperature of the ideal spin-1 Bose gas.
Hereinafter, all the numerical results are obtained by setting
n=kB= 2�	2

m =1. Figure 1 shows the free energy of unit vol-
ume for the gas with I=1.0. It shows clearly that the free
energy of the FM state is lower than that of the PM state at
the low-temperature region, which demonstrates that the FM
state should be more stable than the PM state. Therefore, the
low-temperature state has a spontaneous magnetization. In
experiments, the total spin of the ferromagnetic spinor con-
densate is observed to be conserved, which is called the spin
conservation rule in some of the literature.13,14 However, the
spin conservation rule holds only globally but not locally. In
the theoretical treatment in Ref. 20, the spin conservation
rule is imposed by introducing a Lagrangian multiplier. It is
overconstrained in some sense so that the spontaneous mag-
netization cannot be established. Recent experiments and
theories indicate that some domain structures should be
formed and each domain is magnetized,11,12,15 where the con-
servation law for the total spin can be restored naturally.

The--� FM transition is induced by the FM coupling and
the transition temperature is about tF0.8 for the Bose gas
with I=1.0. When the temperature goes down further, the
BEC then occurs, which is the intrinsic phase transition of
Bose gases. To demonstrate different features of the two
transitions, we now calculate the specific heat of unit vol-
ume,

FIG. 1. Free energies of the FM and PM states with the ferro-
magnetic coupling I=1. The two curves cross at the temperature
tF0.80, which is just the FM transition point.
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C =
1

V
� �U

�T
�

B,V
, �9�

where U is the internal energy,

U = F − TS = � − T� ��

�T
� + N�

=
3V�kBT�5/2m3/2

2�2�	2�3/2 �
�

f3/2�� + �h

kBT
� . �10�

As shown in Fig. 2, for the system with I=1.0, the specific
heat exhibits a jump discontinuity at tF0.8 from the PM
state to the FM state. This is a characteristic feature of the
Landau type of second-order phase transition. Similar behav-
iors have been observed in the specific heat of ferromagnetic
insulators or itinerant-fermion ferromagnets.16,17 The BEC
occurs at tC0.5, where the specific heat exhibits a bend.
But specific heat is continuous at the BEC point, similar to
that of a free Bose gas. The results indicate that the critical
behaviors are different at the two transition points on the
mean-field level.

IV. CURIE-WEISS LAW

For a ferromagnet, the susceptibility above the Curie
point is of special interest. As already studied, the suscepti-
bility is well described by the Curie-Weiss law both in the
insulating ferromagnet and the itinerant-electron ferromag-
net. In this section we calculate the susceptibility for the
itinerant-boson ferromagnet.

The susceptibility can be derived from Eqs. �7a� and �7b�.
Differentiating both sides of the two equations and removing
the term d�, the following equations are deduced:

dM = fd� IsM̄ + he

kBT
� , �11�

where

f = � kBTm

2�	2�3/2� f1/2�� + h

kBT
� + f1/2�� − h

kBT
��

− � kBTm

2�	2�3/2� f1/2�� + h

kBT
� − f1/2�� − h

kBT
��2

�
�

f1/2�� + h�

kBT
� . �12�

Above the Curie point, the magnetization M �then h= IsM̄
+he� diminishes correspondingly when the external field he
tends to zero. So the second term in the above equation is
omitted and then f has a simple form,

f  2� kBTm

2�	2�3/2
f1/2� �

kBT
� . �13�

Thus the zero-field susceptibility of unit volume is given by

 = � �M

�he
�

T,V
=

1

kBTf−1 − n−1Is
. �14�

The susceptibility  is a function of the coupling Is and tem-
perature T. Figure 3 shows 1 / and  versus I at different
given temperatures. As shown in the inset of Fig. 3, the sus-
ceptibility becomes larger as the coupling I increases. It is
physically reasonable since the system with larger I can be
magnetized more easily. At a given temperature,  diverges
as I approaches a critical value. It is worth noting that the
inverse of the susceptibility is in a good linear relationship
with the coupling.

The susceptibility versus temperature is shown in Fig. 4.
One can immediately find that the susceptibility meets quite
well with the Curie-Weiss law in a very large temperature
region. Seeing that the Curie-Weiss law is very difficult to be
derived for the itinerant-fermion ferromagnet, it is really sur-
prising that we get it for the itinerant-boson ferromagnet just
based on the mean-field approximation.

FIG. 2. �Color online� Specific heats of spinor Bose gases with
the coupling I=1.0 and 0.4. The dotted vertical lines serve to guide
the eyes to see the transition points.

FIG. 3. �Color online� Magnetic susceptibilities versus ferro-
magnetic couplings of spinor Bose gases at temperature t=0.4, 0.6,
and 0.8.
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In order to discuss the Curie-Weiss law in a more explicit
way, we proceed to carry out a semianalytical calculation to
deduce the linear dependence of 1 / on the temperature. The
first step is to analyze the temperature dependence of f . It is
quite complicated because the chemical potential � is an
implicit function of the temperature. We consider a limiting
case that the parameter Is is quite small when TF is close to
TC. So � is close to zero in the vicinity of TF. According to
the asymptotic behavior of the polylogarithm function,
f3/2�x��� 3

2 �−2��x and f1/2�x��� /x as x→0−, we get the
following equations from Eqs. �7a� and �13�, respectively:

n  3� kBTm

2�	2�3/2� f3/2�0� − 2�−
��

kBT
� �15�

and

f  2� kBTm

2�	2�3/2�−
kBT�

�
. �16�

Substituting Eqs. �15� and �16� into Eq. �14�, we get

−1 =
nkB

−2

12�
� m

2�	2�−3

T−1/2�T0
−3/2 − T−3/2� − n−1Is. �17�

In the vicinity of TF which is only slightly larger than T0, Eq.
�17� could be further simplified to

−1 
nkB

−2

8�
� m

2�	2�−3

T0
−3�T − T0� − n−1Is

=

9�2�3

2
�

8�
n−1kB�T − �T0 +

8�

9�2�3

2
�kB

Is�� . �18�

Thus the effective FM transition temperature is defined as

TF = T0 +
8�

9�2�3

2
�kB

Is.

So far the Curie-Weiss law is derived. We note that the deri-
vation is only valid in small Is cases.

In the high-temperature limit, one can also easily prove
that −1 is linearly dependent on T. In this case, − �

kBT has a
quite large value, so that

f1/2� �

kBT
�  f3/2� �

kBT
�  e�/kBT

according to Eq. �6�. Combining Eqs. �7a�, �13�, and �14�, it
yields

−1 = n−1�kBT − Is� . �19�

We estimate that this equation holds in the range of t�10.

V. SUMMARY

In summary, we calculate thermodynamic quantities of
the spinor Bose gas with ferromagnetic interactions. Such
kind of investigations has already been performed inten-
sively for the ferromagnetic fermions, while few as yet for
bosons. Based on a mean-field approximation, we show that
the system undergoes a ferromagnetic phase transition first,
then the Bose-Einstein condensation with decreasing tem-
perature. The specific heat shows a jump discontinuity at the
Curie point and a bend at the Bose-Einstein condensation
temperature, indicating that critical behaviors are different
near the two transitions. The more surprising result is that the
mean-field theory yields the magnetic susceptibility which
satisfies perfectly the Curie-Weiss law over a wide range of
temperature.
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